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A Polynomial-Time Algorithm for
Computing the VYelk in Fixed Dimension

Craig A. Tovey*
ISyE and College of Computing'
Georgia Institute of Technology
Atlanta Ga 30332

March 12, 1991
revised April 24, 1991; May 12, 1991

Abstract

The yolk, developed in {16,22], is a key solution concept in the
Euclidean spatial model as the region of policies where a dynamic
voting game will tend to reside. However, determining the yolk is
NP-hard for arbitrary dimension. This paper derives an algorithm to
compute the yolk in polynomial time for any fixed dimension.

1 introduction

In the Euclidean spatial model [6,3,5,9,34, e.g.], each voter’s most preferred
policy is represented by an tdeal point located in R™: voters prefer policies
(points) closer to their ideal points under the Euclidean norm. This is a
widely-studied voting model, with many applications (e.g. [18,31,30,17,36,
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27,28,29,1]). In this model, a classical equilibrium or core will generally
not exist ([32, e.g.]), and in fact the space collapses into chaotic cycles
[21,33]. Consequently, much effort has been made in finding a satisfactory
alternative to solve the equilibrium problem in the spatial model. The
yolk, established in [16,22], has emerged as an important solution concept.
Defined as the smallest ball intersecting all median hyperplanes, it is the
region of policies where a voting game will tend to stabilize. The yolk is
also important by virtue of its close relationships to other solution and
evaluation concepts, such as the uncovered set {24,25,12,22}, the Pareto set
[14], the win set {12}, and Shapley-Owen power scores [13].

However, even determining whether the yolk radius is 0 is co-NP-complete
in arbitrary dimension [19,2]. Johnson and Preparata [19] give a polyno-
mial algorithm whizh can be used to determine whether the yolk radius is
0, for any fixed dimension. This suggests the possibility of a polynomial
algorithm which computes the yolk, for any fixed dimension. Indeed it
had been thought ([22,20,14]) that a linear program in m + 1 variables and
O{n’“} constraints would compute the yolk, but unfortunately it can fail
|39!.

In this paper we derive a polynomial algorithm for arbitrary fixed di-
mension. As is typical with pseudopolynomial time algorithms, the time
complexity makes the algorithin impractical for moderate or large dimen-
sion. At present this does not make fer a serious limitation, because nearly
all the empirical studies to date have been in two dimensions. Poole and
Rosenthal, analyzing 19th and 20th century United States Congressional
roll call data, find that 2 dimensions have nearly the same predictive power
as higher dimensions [28]. So in at least some applications an efficient
algorithm for the two-dimensional case may be all that is ever required.

2 Preliminaries

Let us fix some notation. The voter ideal points are a set V C R™, where
V| =n.

For any hyperplane h in R™, we denote the two closed halfspaces defined
by h as h* and h™.

A hyperplane h is median (with respect to V) iff each closed halfspace




it defines contains at least half the voters, that is iff
lhW* NV{>n/2and A~ NV|>n/2.

The yolk of V' is the smallest ball intersecting all median hyperplanes (see
Figure 1).
A median split of V is defined to be any pair of sets (S, T) such that:

e SUT =V;,
o |S|>n/2
o |T|>n/2.

A hyperplane {z : p-z = po} is consistent with a median split (S, T) iff
SCh*nV and T C h~ NV. The family of all median splits is denoted M.

The following Proposition is immediate but useful:
Proposition 1: A hyperplane is median iff it is consistent with some
median split (S,T) € M.

Originally [16,22] the yolk was defined only for n odd. Koehler[20]
proposed extending it to n even. In this paper n may be odd or even; the
algorithm is slightly more complicated in the latter case.

3 what determines the yolk radius?

The main obstacle to an efficient algorithm is that there are infinitely many
median hyperplanes. We would like to pass from the infinite to the finite by
extracting a small subset of these which determine the yolk. That is, our
goal is to identify a crucial “determining” subset of the median hyperplanes,
such that the yolk can be determined just from that subset. This goal will
be realized by Theorem 1 in this section.
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The natural subset to try to use for Theorem 1 would be the set of
extremal median hyperplanes. A hyperplane is eztremal iff it contains m ® For

points of V. (In the degenerate case we would require the m points to be ‘&I r.d
affinely independent). In m dimensions, the extremal median hyperplanes od 8
are precisely the crucial subset to determine whether or not the yolk radius ., 0
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limsting median lines [22,20], and indeed preliminary algorithmic efferts for
the two-dimensional case ([22,20]) were based on the plausible assumption
that the limiting median lines determine the yolk.

Unfortunately, this assumption can fail, even in two dimensions ([39]).
Thus we have to augment the extremal set to attain a determining set.
The set we arrive at in this section is infinite in one sense, but only a little
bigger than the extremal set in another sense. We defer the statement of
Theorem 1 to the end of the section, because the necessary terminology is
developed in the course of its proof.

To develop the determining set, we recapitulate part of the proof of yolk
convergence in [40]. There upper bounds are sought on the radius of the
yolk, and the main obstacle is again the infinitude of median hyperplanes.
The proof strategy is to formulate a mathematicai program whose solution
is the yolk radius, and then take advantage of certain “nice” properties of
the mathematical program.

Let r denote the radius of the yolk of the set V. (Since V is static, we
suppress it as an argument.) For any point z € R™, let r(z) denote the
radius of the smallest ball centered at = which intersects all the median
hyperplanes. We call r(z) the z-centered yolk. Obviously r = inf, r(z).

Next we develop a mathematical program for r(z).

The key to the formulation is a kind of duality often termed “polarity”
(see e.g. [37,26]) to characterize the set of median hyperplanes. Any hy-
perplane {y : p-y = po} is specified by the (m + 1)-tuple p, po. If moreover
||p|I* = 1 then po is the distance from that hyperplane to the origin. For
any particular median split, consistency of p,po with that split is simply
expressed as a set of linear inequalities.

In particular, for any median split (S,T) € M and any point z € R™ the
nonlinear program below finds the consistent median hyperplane farthest
from z.

max |p - z — po (1)
2.7 =1 (2)
i=1
- Py 2 Po Vv, € § (3)
p-v < po Vv, €T (4)

The first constraint (2) normalizes the hyperplane (p, p;) and the other two
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linear inequalities (3,4) ensure it is consistent with (S, T).

Now the radius of the z-centered yolk is the distance from z to the far-
thest median hyperplane. By proposition 1 this is the farthest hyperplane
consistent with some median split in M. Therefore, r(z) would occur at
the maximum of (1)-(4), taken over M. When we take this maximum,
the absolute value signs can be removed from p, in the objective function
(1), because the maximizing over the median split (T, S} is the same as
minimizing over the median split (S,T).

To further simplify notation, we take z = O in the remainder of the
development of Theorem 1. There is no loss of generality since r(z) depends
only on the relative locatiors of the ideal points V' to z.

Therefore, the following family of nonlinear mathematical programs de-
termines the value of r(0), the yolk centered at the origin.

r(0) = max max pg S.t. (5)
Ipll =1 (6)

PrviZp Vv, €8 (7

pv<p Vo, €T (8)

This formulation (5-8) does not appear particularly attractive. That the
outer maximum is taken over the exponentially large set M is not promising
at first glance.

In [40] the goal is to find upper bounds on r(0). To this end, constraint
(6) is relaxed to the set of linear constraints —~1 < p; < 1Vj = 1,...m.
When this is done, a lucky thing happens: the outer maximization is taken
over an exponentially large class of linear programs, but all of the linear
programs share the identical set of basic solutions, which is only polyno-
mially large. Then the inner and outer maximizations may be replaced by
a single maximum, taken over all basic solutions which are feasible in at
least one member cof the class of linear programs. For (p,po) to be feasible
in at least one of the linear programs, it must be consistent with at least
one of the median splits in M. By Proposition 1, checking this is equivalent
to checking if (p, po) is median, which is easy to do.

For the purposes of algorithm design, we require an exact formulation
rather than an upper bound. The subproblem of the exact formulation is




almost a linear program; just one constraint is quadratic. This suggests
that we apply the Karush-Kuhn-Tucker conditions to (5-8), and perhaps a
similarly lucky simplification will obtain.

The program for r(0) is:

= p, s.t. 9

max, max f(p) = po s (9)
api=1 (10)

pvi >po Vv, €S (11)
pvi<poVu, €T (12)

Apply the KKT conditions to the inner maximization, using multipliers
7o for the quadratic constraint (10) and =, for the linear constraints (11,12).
When v; € SN T, the two constraints combine to yield an equality. So
a single unrestricted (in sign) dual variable m; can be used for the two
constraints in this case. The KKT conditions yield:

m
Yopi=1 (13)
i-1

P v 2 po Yy € S (14)

p-v; <po Vv, €T. (15)

mi(p-vi —po) =0, ViinSUT; (16)

Vi=(0,9,...,0,1) = 27¢{p1,pzy. . P 0) — D milw: —1). (17)
%

The first constraint (13) says p is normalized, ||p||?> = 1. The second
and third constraints (14,15) say that the hyperplane (p,po) is consistent
with the median split (S,T). (These three are just primal feasibility). The
fourth complementary slackness condition (16) says that the multiplier or
dual variable 7, is zero for any point v; not on the hyperplane (p,p,). We
call the v; that are on the hyperplane “binding” since their constraints
are binding. The last condition (17) is a vector equation and breaks into
>imi =1 and 27mgp = Y. mv;. Thus this condition says that p is an affine
combination of the binding v;, up to scaling by the 27, factor.

To understand the geometric meaning of the KKT conditions on this
problem, first consider the simple case where there is exactly one binding
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point, say vy. Then p = v,/27; and ||p|] — 1 implies p = vi/}jve)| (and
also 2my = ||vi]|). Since v; is binding, p- vy = po = ||vil|- So p is simply
the vector vg, scaled to be a unit vector, and py is the distance from the
origin to the point vy. The hyperplane p,po is the hyperplane normal to
the vector from 0 to vg.

More generally (see Figures 2 and 3), suppose there are ! > 2 binding
v; represented by the set B. Then p = 3 ;g m;v; where 1_;cpm; = 1. Thus
p, scaled by 2mg, is in the affine hull of the binding points B. The scaling

factor is whatever is necessary to keep ||p|| = 1. Also, p-v, = py Vi € B. For
notational convenience, denote the ! points of B as vy,---,v;. The preceding
equation implies p-vy = p-vy=---=p-v. Sop-(vp—v,) =0Vk =2,... L

Geometrically, p is the vector from O to the unique point closest to 0 on the
affine hull of the binding v,.

Taken together, the geometric properties of p imply that p is the nor-
malized normal vector to the (I — 1)-dimensional affine space of the binding
points, in the [-dimensional space defined by the origin and the points of B.
That the pcints of B are binding forces (p, pg) to be the (m —1)-dirnensional
hyperplane containing this affine hull and normal to p of course. Finally,
the second and third constraints require that this hyperplane (p,p;) be
consistent with the split S, T.

The preceding gives the meaning of the KKT conditions for a single
split (§,7). Thus the KKT conditions reduce consideration from an infinite
set to a finite but exponentially large (jM]) collection of polynomial sized
(iB)) sets of hyperplanes. When we take the maximum over all median
splits, we are lucky as hoped. The nnly place where (S, T) appears is in the
requirement that (p,po) be consistent with (5, 7). Taken over M, splits, this
is transformed into the requirement that (p, py) be consistent with at least
one median split (S,7) € M. By Proposition 1, this is equivalent to the
requirement that (p,po) be a median hyperplane. So the similarity among
the subproblems, together with Proposition 1, further reduces consideration
to a polynomial number of hyperplanes.

We define the set of determining hyperplanes accordingly (see Figures
2 and 3): let B C V where |B =1 < m. Let Aff(B) denote the (I — 1)-
dimensional hyperplane that is the affine huil of B. Let p be the unit
vector coincident with the shortest line segment connecting the origin and
Aff(B), and let (p,p,) be the hyperplane containing Af f(B). Then (p, po)
is a determing hyperplane. We may refer to it as the determining hyper-
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plane of V specified by B at 0. When V and 0 are clear from context we
will simply refer to it as the determining hyperplane specified by B.

If a determining hyperplane is median, it is called a determining median
hyperplane. We can now state the main result of this section.

Theorem 1. The determining median hyperplanes suffice to determine the
radius of the O-centered yolk. O

We remark that after translation of V Theorem 1 applies to the z-
centered yolk for any z. We thus extend the definition of determining
hyperplanes to the case of arbitrary z. It is important to see that the
determining hyperplanes depend on r. The set of determining hyperplanes
is polynomially bounded for any fixed z, although their union is in general
infinite.

Notice that the determining hyperplanes specified by sets B where
'B| = m, are precisely the class of extremal hyperplanes discussed at the
beginning of this section. Theorem 1 shows that these are needed to deter-
mine the yolk, but they must be augmented by the hyperplanes specified
by smaller sets. The extremal hyperplanes are the only ones that are fixed,
independent of z. The other ones “swivel” (or pivot) to be normal to r as
z changes.

Corollary 1: The radius r{z) of the z-centered yolk can be determined in
polynomial time O(n™*!), for any fixed dimension m.

Proof: The number of determining hyperplanes at z is the number of

choices for B:
™ (n
> (%) = otm).

For each choice of B, the hull Af f(B), the determining hyperplane specified
by B, and its distance to z obviously can all be computed in O(1) (constant)
time (m is fixed). Moreover, whether the determining hyperplane is median
can be checked in O(n) time. Thus the distance of the farthest determining
median hyperplane to z can be computed in time O(n™%1). [




4 a polynomial time algorithm for the yolk
in fixed dimension

In this section we develop a polynomial algorithm te compute r. We need
a couple of lemmata first.
Lemma 1: r(z) is convex and continuous in z.
Proof: Let ¥ denote the set of all median hyperplanes. (The set ¥ has
infinite cardinality, in general.) For any h € X define d(z, h) as the distance
from z to h. Then

r(z) = supd(z, /)

heX

Now d{z,h) is convex in z for all fixed h € ¥. Hence r(z) is convex since
the supremum of convex functions is convex. Continuity also follows easily
because the functions d(z,h) are a uniformly continuous class.

We temporarily make a nondegeneracy assumption, that the points V
are in totally general position. Precisely, we assume the fcllowing: all
subsets S C V| |S| < m + 1, have full affine dimension, i.e., the points in
each such S are affinely independent. This enables a simpler development
of the algorithm for the nondegenerate case (Lemma 2 and Theorem 1).
It will turn out that the same algorithm works correctly in the degenerate
case. This extension will be : cated later (Lemma 3 and Corollary 2).

Lemma 2: Suppose V' is nondegenerate and fewer than m + 1 determining
median hyperplanes are binding at 2. If |V| is odd then z is not the yolk
center. In the case |V| even, if moreover z is not the midpoint of the short-
est line segment connecting two determining median affine hulls Aff(B,),
Aff(B;) where |B;| + |Bz| < m + 1, then z is not the yolk center.

Proof: Let z satisfy the hypotheses stated for the case [V | odd. We wish
to define a direction to move from z along which r(z) is decreasing. Let
J denote the set of determining median hyperplanes binding at z. By
assumption, |J| < m. Since |V| is odd, there are no parallel median hy-
perplanes. Thus by nondegeneracy the hyperplanes of J must possess at
least one intersection point, say w. Then if vie move z from z towards w,
we simultaneously move closer towards all the binding median hyperplanes.
Intuitively, this should decrease r(z), the distance to the farthest median
hyperplane.




If all determining hyperplanes were extremal, this intuitior would be
rigorouslv justified with no additional argument. However, from Theorem
1 we know that we must also consider determining hyperplanes specified
by sets of points B with |B| < m. These hyperplanes are more complicated
than the extremal ones, because they vary with z (Aff(B) does not vary
with z, but (1e hyperplane normal to the line segment from z to Af f(B)
does). In particular, we must resolve two problems. First, it must be
possible to move z a positive distance from z without some set B, whose
determining hyperplane is not median at z, suddenly becoming median.
For if this happened, the new median hyperplane might be far from = and
r(z) might increase. Second, suppose a hyperplane in J were non-extremal
(IB| < m). In this case, the determining binding median hyperplane spec-
ified by B rotates as we move z from 2 towards w. We must be sure that
we actually are moving closer to it, despite its rotation.

To deal with the first of these problems, observe that for any B, the set
of points z, at which the determining hyperplane specified by B is median,
is closed. Therefore its complement is open. Since z is in the complement,
there is an open ball containing z within which the determining hyperplane
specified by B is not median. By Theorem 1 the number of such B is
finite. The intersection of a finite number of open sets is finite. Therefore,
for sufficiently small ¢ > 0, the first problem does not occur at the points
z+ e(w — z).

The second problem is easily resolved. Although the determining hy-
perplane specified by B changes with z, recally that the affine hull Af f(B)
does not. Even when z changes, its distance to B’s hyperplane is still just
the distance to the fixed affine hull Aff(B). Since B’s hyperplane is or-
thogonal to z and w is in the hyperplane, a sufficiently small movement
towards w must bring z closer to Aff(B). This completes the case when
V| is odd.

When |V| is even, parallel median hyperplanes may exist. If such a pair
is in J then no direction of improvement may exist since it is not possible
‘o move closer to both simultaneously. Therefore we must supplement the
proof to deal with the case of parallel determining median hyperplanes.
Fortunately, this case can only arise in a very limited number of situations.

Suppose then that J contains two distinct parallel median hyperplanes,
generated by B, and B;. First we observe B;N B, = ¢ since otherwise their
two affine hulls would intersect amd the parallel hyperplanes would not be
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distinct. Second, observe that |B;| + |B;] < m + 1, for if |By| + |B,| >
m + 2 then dim(Aff(B,))+ dim(Aff(B,))> m and by the nondegeneracy
assumption the two affine hulls would have nonempty intersection.

Third, we claim that there is a unique shortest line segment connecting
the affine hulls of B, and B;. For suppose otherwise: let Zf and Wz be two
shortest segments. We have

o= yll = llw =2l = _min_flu — uall #0,
where z,w € Aff(B;) and y,z € Aff(B;). The space spanned by z,w,y,
and z is at most 3 dimensional and can be visualized easily. Clearly if the
two segments Ty and Wz are not parallel then (z+ w)/2 is closer to Aff(B,)
than z, a contradiction. Thus z,y,w, z are coplanar. Moreover they are
the vertices of a rectangle, or y would not be the point in Aff(B;) closest
to z.

Algebraically, this means £ — w = y — 2 # 0. Recall that an affine
combination is a linear combination in which the sum of the coefficients
equals 1. Since z and w are affine combinations of the points of By,  — w
can be expressed as a nontrivial linear combination

|By]

z—w:ZA.-r;; Z)“‘:O’
i=1

where r; € B;. Similarly y — 2z can be expressed as a nontrivial linear

combination
|B1]|+]|Ba2|

y—2z= Y Ar; > A=0,
i:lB;H-l
where r; € B;. The equality of these two expressions implies the nontrivial

linear equality
{B1]+|Ba|

doNn=0; Y N=0,
i=1

where r; € B; U B,.

Since |B;| + |Bz} < m + 1, this equation contradicts the nondegeneracy
assumption of affine independence. This verifies the third observation, that
there is a unique shortest line segment connecting the two affine hulls.

11




Fourth (and finally), we observe that 2z must be the midpoint of this
shortest line segment. This follows because the line segments from z to
each affine hull are of minimum possible and equal length, and are normal
to the containing median hyperplanes.

Thus we have characterized the situations in which two determining
median hyperplanes from J may be parallel. This completes the proof of
Lemma 2. 0O

The pseudopolynomial time algorithm for computing the yolk is based
on Theorem 1 and Lemma 2.

Theorem 2: For any fixed m, the yolk of n nondegenerate points may be
computed in polynomial time O(n(™+1?),

Proof: The number of determining hyperplanes is O(n™) by Theorem 1.
The number of (m+1)-tuples of these is O(n™(™+1)). For each (m+1)-tuple,
compute the set of points equidistant to the corresponding set of Af f(B)
(this is O(1) since m is fixed). Let the set of all such points be denoted E.
Thus |E| = O(n™m+1),

By Lemma 2, the yolk center is in E. For any point e € E, the radius
r(e) may be computed in time O(n™*!) by Corollary 1. The point ¢ € E
that minimizesgr(e) : e € Eis the yolk center and r(c) is the yolk radius.
The time complexity is O(|E|n™*1) = O(n™m+1)+m+1l) = O(n(m+1)*) a5
claimed.

In the case V| even, we must also compute, for every pair By, B, :
By N B; = ¢;|B1| + |Bz] £ m + 1, the midpoint of the unique shortest
connecting line segment. There are O(n™*!) such pairs and the midpoints
must be included in the set of potential yolk centers E. The size of E
remains O(n™™+1) and the algorithm complexity is unchanged. O

Now we show that the algorithm of Theorem 2 applies to the degenerate
case as well. Lemnma 3 shows that slight perturbations of V will result in
only slight perturbations to the yolk.

Lemma 3: Let V be any configuration and let V be a nondegenerate
infintessimal perturbation of V. Then the radius and center of the yolks
of V and V differ only infintessimally. When [V | is even, the center of the
yolk of V differs only infintessimally from one of the yolk centers of V.

Proof: Suppose V and V are two configurations that differ infintessimally,
so that |V —V{® < ¢ for suitably small e. Let r¥ (z) denote the radius of the
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z-centered yolk of configuration V. It is obvious that for any z, r¥ (z) and
r‘-’(x) can only differ infintessimally, since each median hyperplane moves
parallel to itself only infintessimally. Thus if we slightly perturb V' to get the
ideal points in general position, the yolk radius is perturbed only slightly.

However, this does not yet assure that the center of the yolk is only
slightly perturbed as well. Let C denote the set of points at which min, r¥ (z)
is attained. That is, C is the set of possible yolk centers.! (Note C is con-
vex.) Now for arbitrary 6 > 0 let C’ denote {z: 3y € C,||z — y|| < 6}, the
6-neighborhood of C. Let D denote the closed set which is the complement
of C'. By Lemma 1, the minimum of ¥ (z) on D is attained at a point ¢ on
the boundary of D with C'. Let v = r¥(g) —r¥(c) > 0. Now select € > 0 so
that ||rV (z) — r¥||® < v/3. Select any ¢ € C. Then for all d € D, we have
r'(d) >rV(d) —v/32rV(q) —v/3> 1V (g) —2v/3=rV(c) + v/3 >V (c).
Therefore the minimum (actually all the minima) of r¥ (z) is (are) attained
in C', the §-neighborhood of C. Thus for arbitrary § > O there exist suf-
ficiently small perturbations of V' that do not perturb the yolk center by
more than §. This justifies taking V' to be a nondegenerate configuration.
O

Lemma 3 permits there to be arbitrarily close nondegenerate configu-
rations whose centers differ substantially. But for any nondegenerate con-
figuration, there exists a neighborhood of configurations whose centers are
close.
Example: Let V be the degenerate configuration of four points as the
vertices of a rectangle, {(0,0),(2,0),(0.1),(2,1)}. Then C = {(1,a) : 0 <
a<1}. IfVis perturbed infintessimally to nondegenerate f’, then the
center of the yolk of V' will be infintessimally close to either (1,0) or (1,1),
depending on how the short sides of the perturbed rectangle slant.

Now we extend the algorithm to the degenerate case.

Corollary 2: For any fixed m, the yolk of n points may be computed in
polynomial time O(n(m+1?),

Proof: Let V have yolk center ¢ and radius r. If V were degenerate, it
could in principle be infintessimally perturbed to nondegenerate V. The
algorithm of Theorem 2, applied to V', would compute center ¢ and radius
r. Now if the algorithm of Theorem 2 were applied to V, it would compute

'If the yolk is unique (it always is when n is odd) then C consists of a single point.
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“center” say, ¢’ and “radius” r'. Consider the computations performed

by the algorithm: they involve the distances between the points V and
hyperplanes dete.: ned by these points. Moreover all computations are
confined to the compact region defined by the convex hull of V. Therefore,
¢' and r' must be arbitrarily close to ¢ and 7, respectively, for small enough
perturbation. But by Lemma 3, the latter are arbitrarily close to ¢ and r,
the true yolk center and radius, respectively. Thus ¢/ and r' must in fact
be the true values. O

The algorithm of Theorem 2 is very easy to parallelize, because it simply
takes the minimum of a large number of independent calculations. We
formalize this observation in a corollary.

Corollary 3: For any fixed dimension, the yolk of V may be computed in
logarithmic time with a polynomial number of processors.

Proof: The set of equidistant points £ may be computed independently
in parallel for each (m + 1)-tuple described in Theorem 2. The minimum
of a polynomially bounded set of numbers may be computed in logarithmic
time. Also, the splitting up of the tuples requires only logarithmic time.

It remains to show that for each equidistant point e, the radius of the
e-centered yolk, r(e), may be computed in logarithmic time. In the proof of
Corollary 1, each choice of B could be processed independently in parallel
(assuming sufficiently many processors). The first part of the processing is
the computation of Aff(B) and its distance to e: this requires O(1) time
(in fixed dimension). The second part of the processing is the check to see
if the determining hyperplane is median or not. This may be accomplished
in logarithmic time with n processors: each processor handles one point
and checks in constant time which halfspace (possibly both) the point is
in; the sums are tallied up in logarithmic time.

The algorithm therefore requires only logarithmic time and O(n(mt1)?)
processors. O

In practice, with current-day hardware, far less than this full amount of
parallelism would be implementable. It is clear from the proof of Corollary
3 that a nearly perfect speed-up could be obtained with any small number
of processors.

Even for m = 2 dimensions, the complexity estimate of Theorem 2 is too
large to ensure practicality. In the next section we make some improvements
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in the algorithm and in the complexity estimation, to achieve a practical
method for problems of moderate size in two dimensions.

5 improvements in performance and time bounds

In this section we improve the actual efficiency and sharpen the analysis
of the algorithm for the two-dimensional case, to achieve O(n*®) provable
worst-case time complexity. If a conjecture of Erdos, Lovasz, Simmons, and
Straus holds, the worst-case complexity reduces to o(n3*¢) for all ¢ > 0.
Moreover, based on empirical observation, we would expect the algorithm
to require O(n®logn) time. We also suggest a variant which could possibly
perform in sub-cubic time (for 2 dimensions), though rigorous bounds of
this quality remain an open problem.

The first improvement has to do with computing the set of points
equidistant to the affine hulls Aff(B). When all three hulls are lines,
or all points, there is only one equidistant point, defined by the intersec-
tion of two lines. But if some of the hulls are points and some are lines,
there will be two equidistant points, defined by the intersection of a line
and a parabola. In higher dimensions there may be many (O(1) for any
fixed m) equidistant points. In the previous section, we computed r(z) for
each of these points. But this is not necessary. By the convexity of d(z, k)
in Lemma 1, the distances to the hulls on any convex combination of the
equidistant points are less than or equal to the convex combination of the
distances at the equidistant points. Therefore, if these hulls are the bind-
ing (farthest) from an equidistant point p, and another equidistant point g
is closer to the hulls, then p cannot be the yolk center. This means that
whenever there are multiple equidistant points, we may discard all but the
closest of these.

Now consider a point ¢, which we suppose is the closest equidistant
point to three (m + 1 in general) affine hulls, at distance k. Suppose also
that the determining lines (hyperplanes in general) are median. Then the
yolk radius must be at least k, because the triangle (simplex) formed by
3 (m + 1) determining median lines (hyperplanes) has an inscribed circle
(ball) of radius k.

Thus each 3-tuple (m-tuple) of affine hulls provides a lower bound on
the yolk radius, if the determining lines are median. In the previous section,
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we computed r(g) for each equidistant point ¢, and selected the smallest to
get the yolk radius. Instead, we discard all but the closest in each set of
equidistant points; we further discard any of these whose containing lines
are not all medians; then we select the point among those remaining at
largest distance k from the affine hulls it is equidistant to.

The revised algorithm operates as follows: there are O(n™(™+1)) (m+1)-
tuples of affine hulls. For each of these, use O(1) time to find the closest
equidistant point and compute the determining hyperplanes, and O(n) time
te check if these hyperplanes are all median. Selecting the largest resulting
distance takes no extra time. The resulting complexity is O(n"‘z’“"‘“).

The computation taking the most time in the revised algorithm is the
check to see if the determining hyperplanes are all median. If an affine hull
is extremal then it is its own determining hyperplane (it doesn’t “swivel”).
So the determining hyperplane is either median or not, independent of
which (m + 1)-tuple is being considered. It is more efficient to precompute,
once for each extremal hyperplane, whether it is median or not. There
are only O(n™m™+1-1) (m 4 1)-tuples of affine hulls in which not all the
affine hulls are m-dimensional (i.e. extremal, limiting). For these tuples
the processing time is still O(n); for the O(n™™+1))-tuples of extremal
hyperplanes the precomputations reduce the processing time to O(1). The
resulting complexity is O(n™**™).

In the two-dimensional case an alternative to preprocessing the extremal
hyperplanes is to preprocess the ideal points V so as to be able to query
whether a line is median in time better than O(n). If O(n?log n) time and
O(n?) space are used, each such query can be answered in O(logn) time
[7]. This would result in a complexity of O(n™ +™ log n).

If the two kinds of preprocessing are both used, the resulting complexity
is still O(n™**™), the dominant term due to processing O(n™*™) tuples of
extremal hyperplanes each in constant time. So the best 2-D algorithm we
have so far has complexity O(n®).

To further reduce the time complexity, notice that not all of the ex-
tremal hyperplanes will be median. Computational experience makes one
suspect that there cannot be a great many median hyperplanes. In two
dimensions I have never encountered a configuration from actual data with
more than than 2n distinct extremal median hyperplanes?. Let ¢(V) denote

2This is consistent with the experience reported to me by other researchers.
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the number of distinct extremal median hyperplanes of the configuration
V, and let ¢,, denote the maximum of e(V) over all nondegenerate configu-
rations V : |V| = n. The best known upper bound on e, in two dimensions
is given by Erdos, Lovasz, Simmons, and Strauss:
Theorem 3 [10]: e, = O(n!®). O
Erdés et al. [10], (and independently Edelsbrunner and Welzl (8] ® )
construct configurations V with e¢(V) ~ nlogn. They add, “it appears
likely that the lower bound obtained for e, is closer to the truth than the
upper bound ... we conjecture than e, = o(nt¢) for all € > 0” (p. 149).
We combine Theorem 3 with Theorem 2 and the algorithm modifications
discussed in this section, to state improved bounds for yolk computations
in two dimensions:

Corollary 4: In two dimensions the yolk may be computed in time O(n*3).
If the Erdos-Lovasz-Simmons-Strauss conjecture holds, then the computa-
tion may be achieved in time o(n%*¢) for all € > 0.

Proof: By Theorem 3 there are O(n*®) 3-tuples of extremal median lines.
With the preprocessing of extremal median lines as discussed, these may
be processed in time O(1) each. There are O(n!**15+1) = O(n*) 3-tuples,
each comprised of two extremal median lines and one point (|B| = 1). With
the preprocessing of V for halfspace queries from [7], the median queries
will require O(logn) time each. So these 3-tuples contribute O(n?logn)
to the total processing time. The other kinds of 3-tuples will require only
O(n®*®logn) and O(n3logn) time respectively. Thus the total processing
time required is O(n*% + n*logn) = O(n**®) as claimed.

Now suppose the ELSS conjecture is true. If e, = o(n'*?) then there
are o(n®*3%) 3-tuples of extremal median lines to be processed in O(1) time
each. There are o(n3*?) 3-tuples (of two lines and one point each) to
be processed in O(logn) = o(n®) time each. The other kinds of 3-tuples
contribute less. The overall complexity is o(n®*¢) where e = 36. [

We remark that if in practice e(V) ~ n, as so far observed, then the
observed time complexity will be O(n®logn). In this situation the dominant
term would be from the ~ n® 3-tuples consisting of 2 extremal lines and one

3the upper bound of O(n!®) in [8) on distinct feasible median splits does not give an
upper beund on e, because many lines may be consistent with the same split.

17




point each. The processing time would be O(log n) per 3-tuple, to check if
the determining line of the point is median.

For general dimension, finding good upper bounds on e(V) remains an
open extremal combinatorial problem. Erdds et al. remark (p. 149) that
their upper bound does not generalize easily. Here we prove an O(n™ %)
upper bound on the ezpected value of ¢(V), in m dimensions.

Proposition 2: Let the n points of configuration V' be sampled indepen-
dently from any nondegenerate distribution z on ®™. Then the expected
number of extremal median hyperplanes, e(V), is O(n™*%).

Proof: Let vy,...,v, denote the points. Let h be the extremal hyperplane
sperified by v;,...,v,,. Suppose vy,...,v,, were sampled first. Then h
would be fixed, and we could compute u(h*), the probability that a point
sampled randomly from u falls in one of the halfspaces defined by h. Since
 is nondegenerate, u(h) = 0. Now h will turn out to be median iff exactly
half the remaining n — m points fall in h*. The probability of this event is
the probability that, of n — m identical independent Bernoulli trials, each
with parameter p = p(h*), exactly half are successful. This probability
is bounded by the case p = 1/2. In this case the probability, from the
binomial distribution, is 2™ " (:_:22) ~ 1/4/n. Therefore, the probability h
is median is at most ~ 1/4/n.

By the linearity of expectation [11], the expected number of median
extremal hyperplanes is O(n™%). 0O

In the proof of Proposition 2, if u(h) # p, then the probability A is
median is smaller than the estimate. The slack in the proof leads me to
conjecture that the bound of Proposition 2 holds in the worst case.

Applying Proposition 2 to the general case gives O(n{™+1)(m=5)) (m41)-
tuples of extremal median hyperplanes. These can be processed in O(1)
time each as before. Also there are O(n(™(m=8)+m-1y (1 4 1) tuples of
m extremal median hyperplanes plus one determining hyperplane specified
by B : |B| = m — 1. These can be processed in O(logn) time each with
the preprocessing of V. The other families of tuples are lower order and
do not affect the analysis. The overall (expected) complexity reduces to
O(nm?+m/2—.5).

To summarize, the algorithm efficiency can be improved with appro-
priate preprocessing. The efficiency also depends on the magnitude of
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e(V). For two dimensions, the proven time complexity is O(n*®), with
a conjecture-based bound slightly worse than cubic.

Finally it should be observed that none of the versions of the algorithm
presented so far has very strong use of the convexity of r(z) from Lemma 1.
If extremal hyperplanes sufficed to determine the yolk, then as McKelvey
has observed [22] the yolk of V could be calculated by solving an (m + 1)-
variable linear program in e(V) constraints. The algorithm here performs
the analog of enumerating all or most of the basic feasible solutions. An
analogy with ‘he operation of the simplex method on a min-max linear
program suggests the following algorithm: (i) preprocess extremal hyper-
planes and V; (ii) solve the linear program of [22] to get a “hot start” initial
solution z equidistant by amount d to the affine hulls of sets By, ..., Bp1;
(iii) compute for the initial solution the sum of the violations, i.e. the sum
over all determining median hyperplanes k at z, of |d(z, h)]*; (iv) while the
sum of the violations exceeds 0, iteratively improve the current solution by
exchanging one of the B; for another B, where improvement is measured
by the sum of the violations. With O(n™) choices for B, and the compu-
tation of the sum of violations requiring O(n™), such an algorithm might
perform in about O(n?™), as compared with about O(n™) for the enumer-
ative algorithm. In the two dimensional case the algorithm would require
O(n®) (O(n***) conjectured) time per iteration. A theoretical analysis of
this algorithm, coupled with a proof of the ELSS conjecture, might at-
tain a sub-cubic time complexity. (Notice a sublinear number of iterations
would be required.) While this might not improve much on n3*¢ for the
two dimensional case, it could make yolk computations in three dimensions
a practical possibility.
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